Rajakylän koulu

3D-tulostimen hankinta peruskoulussa

3D-tulostus on yksi nopeimmin kehittyviä ja kasvavia valmistusteknologiota. Kyseessä on valmistusteknologia, joka jo tällä hetkellä koskee jokaisen ihmisen elämää jollain tavalla. Kouluprojekteihin 3D-tulostus avaa ihan oman ulottuvuuden. Yhtäkkiä onkin mahdollista tehdä asioita, joista ei ole osannut edes uneksia. Kirjoituksen tarkoituksena on avata aihealuetta kokonaisuutena. Jutussa on paljon linkkejä, joista voi syventää tietämystään tulostukseen liittyvissä asioissa sekä löytää materiaalia oman opetustyön tueksi.

3D-tulostuksen perustoimintaperiaate on kolmiulotteisen kappaleen rakentaminen kerroksittain ainetta lisäämällä. Kappale tulostetaan tietokoneella suunnitellun 3D-mallin mukaan. Toimivia materiaaleja on paljon: mm. lukemattomat muovit, teräs, titaani, alumiini, lasi, betoni sekä erilaiset komposiitit kuten hiilikuidun ja eri muovien yhdistelmät. Peruskoulukäytössä tulostetaan käytännössä muoveja.

Tällä hetkellä 3D-tulostusta käytetään teollisuudessa ennen kaikkea tuotesuunnittelussa prototyyppien valmistukseen. Lisääntyvissä määrin sitä käytetään myös pienissä tuotantosarjoissa ja varaosien tulostamisessa. Myös yhä useammasta kodista löytyy tulostin, harrastajaluokan laitteiden muututtua halvemmiksi viime vuosien aikana.

 

Mitä hyötyä 3D-tulostuksen opettamisesta on ja mitä sen kautta voi oppia?

Tässä joitain asioita, jotka liittyvät 3D-tulostukseen ja sen avulla oppimiseen:

  • tietokone avusteinen suunnittelu (CAD)
  • 3D-mallinnus ja kolmiulotteinen hahmottaminen
  • geometria, muodot, mittaaminen ja päässälasku
  • muotoilu
  • prototyyppien valmistus tuotesuunnitteluprosessissa
  • materiaalitekniikka (muovit ja komposiitit)
  • erilaiset rakenteet ja lujuusoppi
  •    tutustuminen 3D-tulostuksen eri käyttösovelluksiin mm. teollisuudessa, lääketieteessä ja rakentamisessa

 

Esimerkkiprojekteja

Omien tuotteiden valmistamien 3D-tulostimella sisältää kaksi osiota: 3D-mallintamisen ja 3D-tulostamisen. Useimmiten oppilaiden projekteissa n. 80% ajasta ja vaivasta kuluu mallintamiseen, ja loput tulostamiseen. Projektien keskiössä on siis 3D-mallinnus ja tulostimet tekevät parhaassa tapauksessa sen mitä käsketään.

Alakoulun puolella 3D-tulostimet ovat olleet teknologiapainotteisten luokkiemme käytössä. Toteutettu on mm. kuvataiteen, äidinkielen ja teknisen työn yhteisprojekti, missä oppilaat käsikirjoittivat tarinan, suunnittelivat tarinan hahmojen ulkoasun sekä mallinsivat hahmot tietokoneella. 3D-mallit tulostettiin 3D-printterillä ja maalattiin. Lopuksi oppilaat tekivät hahmoilla animaatioelokuvan käsikirjoituksen mukaisesti. Teknisessä käsityössä kaikille oppilaille opetetaan 3D-mallinnuksen perusteet ja tulostetaan pieni itsesuunniteltu tuote. (https://rajakylatekno.wordpress.com/2014/04/09/suunnitelmasta-tuotteeksi/)

Yläkoulun puolella 3D-tulostusta on käytetty eniten teknisen käsityön opetuksessa. Seitsemännen luokan oppilaiden kanssa on harjoiteltu 3D-mallinnusta koruprojektin avulla. Toinen hyvä 6.-7.luokkien projekti on ollut leimasimen valmistaminen kankaanpainantaan. 8.- ja 9.-luokan valinnaisissa on tehty osia oppilaiden omiin projekteihin. 3D-tulostusta voi hyödyntää myös kuvataiteen muotoiluun liittyvissä tehtävissä. Tekstiilityössä puolestaan voi tulostaa vaikkapa uniikit napit omaan asuun ja molemmissa edellä mainituissa hyödyntää tulostettuja painolaattoja ja -rullia.

Koruprojekti                                                                                                                             https://www.youtube.com/watch?v=MEcvuBwnKVM

Tällä videolla enemmän koulumme tulostusprojekteja                                                             https://www.youtube.com/watch?v=6kKCTKTn2cM

 

3D-mallinnusohjelmat

Kaikki lähtee liikkeelle 3D-mallinnuksesta. Peruskoulukäyttöön soveltuvia ilmaisia mallinnusohjelmia on jo useita. Tällä hetkellä käytämme 3.-5. luokilla selainpohjaista TinkerCad:ia ja siitä eteenpäin SketchUpMake-ohjelmaa. Googlen palveluja hyödyntäville kouluille kätevä on selainpohjainen SketchUp. Joissain koulussa käytetään DesingSpark- tai Fusion 360-ohjelmia.

Ensimmäinen aloituskerta on yleensä täysin opettajajohtoinen, mutta ainakin SketchUpin kanssa on hyvä käyttää tutoriaalivideoita opiskeluun. Tällöin oppilaat voivat edetä harjoittelussa omaan tahtiin ja oppilaiden auttaminen on myös helpompaa. Suurin osa seitsemännen luokan oppilaista on oppinut SketchUp:in peruskäytön siten, että pystyvät suunnittelemaan omia töitään sen avulla. Seitsemännellä luokalla olemme perusharjoitteluun käyttäneet 3-4 x 135min. Hyödynnämme SketchUp-ohjelmaa teknisessä käsityössä paitsi 3D-tulostus kappaleiden mallintamiseen, niin myös mittapiirustusten tekoon lähes kaikissa yläkoulun projekteissa. Oppilaan mallinnettua oman työnsä, hän merkkaa siihen mitat ja tulostaa mittapiirustukset paperille.

Tästä linkistä löytyy materiaalia 3D-mallinnuksen ja 3D-tulostuksen perusteiden opettamiseen. Lisäksi tuolta löytyy SketchUp-itseopiskeluohje, jossa tallennusosio on O365 ympäristöön. Näitä voi vapaasti muokata opetuskäyttöön kunhan alkuperä näkyy. https://rajakylatekno.wordpress.com/opettajan-materiaalipankki/3d-mallinnus-ja-tulostus/

Linkit mallinnusohjelmiin

TinkerCad: https://www.tinkercad.com/#/

Selainpohjainen SketchUp: https://www.sketchup.com/products/sketchup-free

SketchUp: https://www.sketchup.com/download/all

DesingSpark:  https://www.rs-online.com/designspark/mechanical-download-and-installation

Fusion 360: https://www.autodesk.com/products/fusion-360/students-teachers-educators

 

Tulostimien ohjausohjelmat

Tulostimien ohjausohjelmat kehittyvät nopeasti ja ovat jo sillä tasolla, että yläkoulun oppilaat pystyvät käyttämään niitä lyhyellä perehdytyksellä tulostamisessa. Perusjuttuja pystyy tekemään melko helposti, mutta toisaalta 3D-tulostuksessa on todella paljon erilaisia muuttujia ja säätömahdollisuuksia. Esimerkiksi haastavampien muotojen tulostaminen, tai eri materiaalin käyttö vaatii aikaa perehtymiseen.

Kolme yleisintä tulostimien ohjausohjelmaa ovat RepetierHost, Cura ja Simplify 3D. RepetierHost ja Cura ovat ilmaisia ja Simplify 3D maksullinen. Kaikki ohjelmat toimivat koulukäytössä hyvin, mutta omasta mielestäni RepetierHost on intuitiivisin oppilaille.

Oman näkemykseni mukaan on pedagogisesti hyvä, että 3D-tulostin on kiinni tietokoneessa. Tällöin kappaleen tulostimen lämpötilojen ohjaus, yms. on reaaliaikaista ja havainnollista. Toinen vaihtoehto on siis säätää tulostettavan kappaleen asetukset suunnittelukoneella ja siirtää tulostettava tiedosto muistikortilla, muistitikulla tai wifi-yhteydellä itsenäisesti toimivalle tulostimelle. Toki niitäkin pystyy yleensä säätämään tulostuksen aikana, jos tulostimessa on näyttö.

Tulostusnopeus voi olla joskus pullonkaula, mutta siinä auttaa useampi tulostin. Jos koko opetusryhmä tekee jotain tulostettavaa, on pedagogisesti järkevää olla vähintään kaksi tulostinta, joita käytetään yhtä aikaa. Useammastakaan ei ole haittaa. Tällä hetkellä koulullamme on kolme tulostinta, jolloin itse tulostus ei ole yleensä hidasta projekteja. Koruprojektissa olen rajannut kappaleen maksimikooksi noin 5x40x40mm. Keskimääräinen tulostusaika projektissa on ollut n.10 min. Isommissa projekteissa isompien kappaleiden tulostaminen vie helposti useita tunteja, joten tulostus käynnistetään tunnilla ja tulostuksen aikana työstetään projektin muita osa-alueita eteenpäin.

Tulostusnopeuteen pystyy vaikuttamaan myös eri asetuksilla. Tärkeimmät kaksi ovat tulostuksen kerrospaksuus ja kappaleen täyttöaste. Yleisimmät kerrospaksuudet koulukäytössä ovat 0.1, 0.2 ja 0.3mm. 0,1mm kerrospaksuus on paikallaan kun halutaan sileä sivupinta (esim. korun valumalli) ja 0,3mm kun halutaan mahdollisimman nopea tulostus ja pinnan laadulla ei ole niin väliä (esim. leimasin). Aika ja kerrospaksuus ovat kääntäen verrannollisia. Esim. yhden tunnin tulostus 0,3 mm kerrospaksuudella muuttuu lähes kolmen tunnin tulostukseksi, kun kerrospaksuus pudotetaan 0,1mm:iin. Täyttöasteprosentti kertoo puolestaan kuinka suuri osa kappaleen sisuksesta täytetään tulostettaessa. Mitä suurempi osa kappaleen sisuksista täytetään, sitä kauemmin aikaa tulostamiseen tietenkin kuluu. Käytämme oppilastöiden tulostukseen pääsääntöisesti 15%:in täytöastetta, jolloin tulostus on nopeaa ja kappaleen kestävyys on yleensä riittävä. Tällä täyttöasteella kappaleen sisälle tulostuu tukiverkko, jonka silmäkoko on n. 5x5mm. Suurempaa lujuutta vaativissa kappaleisssa täyttöasteen voi nostaa vaikka 100%:iin.

3D-tulostus on hyvä apu moneen tuotesuunnittelu- ja muotoiluprojektiin. Se mahdollistaa rakenteet, joita ei ole aikaisemmin pystynyt kouluympäristössä tekemään, kuten oppilaan itse suunnittelemat persoonalliset elektroniikan laitekotelot. Oppilaiden motivaatiotaso on myös ollut tulostusprojekteissa korkea. Kaiken kaikkiaan 3D-tulostus avaa kokonaan uuden ja mielenkiintoisen maailman.

 

3D-tulostimen hankinnassa huomioitavaa

Selvitä seuraavat asiat ennen ostopäätöstä:

  • Käyttäjien ja käytön määrä? Yksi vai useampia tulostimia?
  • Yksi vai useampia tulostussuuttimia? Kahden suuttimen suurin etu on tällä hetkellä veteen liukenevan tms. tukimateriaalin käyttö. Kaksiväritulostus on ohjelmallisesti vielä liian hankalaa suurimmalle osalle oppilaista ja opettajista.
  • Käytetäänkö tietokonetta tulostimen ohjaamiseen vai käytetäänkö tulostinta itsenäisenä yksikkönä?
  • Tapahtuuko tiedostojen siirto Wifillä, USB-tikulla, muistikortilla vai onko tietokone kiinni tulostimessa? Tarkista yhteensopivuudet.
  • Käyttöönoton helppous?
  • Perehdytyskoulutuksen saatavuus? Jos aikaisempaa kokemusta ei ole, niin hanki perehdytyskoulutus. Hinnat 150-800€ riippuen tarjoajasta ja koulutuksen pituudesta.
  • Tulostimen kalibroinnin helppous?
  • Tulostuslangan vaihdon helppous?
  • Tuetut tulostusmateriaalit? Useampi parempi.
  • Onko mahdollisuus käyttää yleistä 1.75mm tulostuslankaa vai onko tulostinvalmistajalla oma lanka-/kasettijärjestelmä?
  • Toimintavarmuus?
  • Tulostimessa pitäisi olla lämmitettävä tulostusalusta.
  • Tulostusalueen suuresta koosta ei koulukäytön aikaresurssin takia ole paljoa hyötyä. 150mm tai 200mm suuntaansa mielestäni riittää.
  • Laitteen perushuollon helppous ja varaosien saatavuus?
  • Kotimaisuus ja kotimainen tuotetuki?
  • Miten takuuajan huolto/korjaus on järjestetty?
  • Miten Huollot ja korjaukset onnistuu takuuajan jälkeen?
  • Hinta?
  • Kuinka äänekäs? Hiljaisen työskentelyn tilaan ei kaikkia tulostimia voi sijoittaa.
  • Tulostimelle pitää koulukäytössä olla kohdepoisto, tai muuten huomioitava käry ja pienhiukkaspäästöt. https://www.ttl.fi/uudet-ohjeet-nain-tyoskentelet-turvallisesti-3d-tulostinten/

                      Esimerkki tulostimien kärynpoiston järjestämisestä. Kuva Tuomo Einiö

 

Tulostimien vertailua

Eri tulostinmalleja on suomessakin saatavana useita kymmeniä, tai jopa satoja erilaisia. Koostin alla olevaan taulukkoon perustietoa itse testaamistani tulostinmalleista. Lisäksi olen keskustellut joka koneen kohdalla vähintään kahden konetta käyttäneen kanssa. Jokaista näitä laitetta on käytössä suomen peruskouluissa ja minkä tahansa laitteen voi hankkia. Jokaisessa laitteessa on omat hyvät ja huonot puolensa, joita yritän valaista alla olevassa taulukossa. Tällä hetkellä kaikkia tulostimia saa Suomesta, tuotetuki on Suomessa ja huolto toimii ainakin jollakin tavalla.

Mielenkiintoista on ollut myös se, että jokaisesta listalla olevasta tulostinmallista on sekä hyviä, että huonoja kokemuksia. Ulkomaisissa koneissa ongelmat ovat yleensä liittyneet kokoonpanon laatuun ja siihen liittyviin virheisiin sekä toisaalta varaosien hitaaseen saatavuuteen ja takuuhuoltojen hitauteen. Kotimaisilla koneilla ongelmat ovat liittyneet valmistussarjojen alkupään koneisiin, joiden lastentauteja on korjattu. Nyt laitteet on saatu toimimaan jo hyvin. Toisaalta myös kaikenlainen tuotetuki varaosineen ja huoltoineen on toiminut kotimaisilla koneilla kokemusten mukaan hieman paremmin.

Kaikkiin taulukossa oleviin tulostimiin on myös saatavissa perehdytyskoulutus Anycubicia lukuunottamatta. Toisaalta siihenkin löytyy hyvät ohjeet ja koneen käyttöönotto oli kohtalaisen helppoa. Kaksi seitsemännen luokan tyttöä kasasi tulostimen yhdellä oppitunnilla ja ohjelmien asentamiseen ohjeiden mukaan sekä kalibrointiin meni n. 20min. Tämän jälkeen tulostin oli käyttövalmis.

Taulukon viimeisenä on Minifactory MF3, jonka valmistus on jo lopetettu. Otin se taulukkoon kuitenkin vertailun vuoksi, koska se on edelleen yksi yleisimpiä tulostimia peruskouluissa ja itsellä on eniten kokemusta siitä. Toinen taulukon ”ulkopuolinen” on XYZ Da Vinci 1.0 pro 3in1, jossa on tulostin, 3D-skanneri ja pienitehoinen laserkaiverrin yhdessä. Pelkäksi tulostimeksi en laitetta suosittele, mutta pienen koulun yleislaitteena sekin menettelee.

Jos ulkomailta tilaaminen onnistuu, niin hyviä koulukäyttökokemuksia löytyy mm. Prusa i3 mk2- ja mk3-tulostimista. Yksi harkinnan arvoinen laite voisi olla myös RoboxDual. Ensimmäinen Robox oli susi mekaanisen laadun osalta, mutta yhden käyttäjäkokemuksen perusteella ensimmäisen version laatuongelmat on saatu korjattua uuteen Dual-versioon.

Opiskele 3D-tulostuksesta lisää MiniFactory:n erinomaisilta soittolistoilta YouTube:ssa. Kaikille soveltuvia ovat mm. materiaalit ja ongelmatilanteet. https://www.youtube.com/user/miniFactoryFI/playlists

 

Juttuja 3D-tulostuksesta

http://www.lut.fi/documents/10633/335186/140512+Firpa+Annual+Meeting+2014+Mika+Salmi.pdf/3393d84c-4691-4774-90b2-0d0c844c14f1

http://www.tiede.fi/artikkeli/jutut/artikkelit/tulostin_printtaa_uuden_ihon

http://tieku.fi/teknologia/3d-tulostus/ennatys-uusi-lentokone-sisaltaa-tuhat-3d-tulostettua-osaa

http://www.mtv.fi/uutiset/kotimaa/artikkeli/imatralaislaite-on-ainoa-maailmassa-ja-saattaa-mullistaa-koko-rakennusteollisuuden/5197868

 

Jouni Karsikas

Mainokset

Teeppä ite! Make it now -päivä Rajakylän koululla

Maker ja DIY ovat tällä hetkellä kovasti pinnalla olevia juttuja, joten päätimme järjestää mahdollisuuden Rajakylän koulun ympäristössä asuville lapsille ja vanhemmille osallistua lauantaina 5.5.2018 koulullamme järjestettyyn Make it now -päivään. Päivän aikana pääsi osallistumaan yhteen neljästä pajasta, joista jokaisesta sai mukaansa ainutlaatuisen, itse suunnittelellun ja tehdyn tuotteen. Pajoissa hyödynnettiin koulullamme olevia laitteita ja materiaaleja. Yhtenä vaihtoehtona oli pingismailapaja, jossa laadukkaista materiaaleista pääsi rakentamaan itselleen pingismailan. Toinen paja keskittyi 3D-mallinnukseen ja -tulostukseen, jossa oman Sketchup-suunnittellun pohjalta tulostettiin 3D-tulostimella avaimenperä. Kolmas vaihtoehto oli korusuunnittelupaja, jossa Vectr-ohjelmalla suunniteltiin erilaisia korva- ja kaulakoruja. Korut leikattiin vanerista tai akryylista laserleikkurilla. Neljännessä pajassa suunniteltiin Silhouette studio -ohjelman avulla kuvia ja tekstejä t-paitaan. Suunnitellut kuvat leikattiin vinyylileikkurilla ja siirrettiin silittämällä omaan tai teknoluokilta hankittuun t-paitaan.

Päivään osallitui yhteensä n. 50 alueemme lasta ja aikuista ja innokkuutta kaikissa pajoissa oli kiitettävästi. Päivän aikana myös kokeiltiin koulun pingispöydällä itse valmistettuja mailoja harjoituspelien kautta ja poseerattiin itse suunniteltujen ja toteutettujen tuotteiden kanssa pajojen vetäjien ottamissa kuvissa. Pajoihin liittyvää ohjemateriaalia löydät blogimme materiaalipankista. Kiitos kaikille mukana olleille! Tässä vielä kuvia päivästä:

Rajakylän teknotiimi: Arto Hietapelto, Jouni Karsikas, Jussi Näykki ja Markus Packalén

Yritysvierailuista suuntaa ammatinvalintaan

Vierailimme yhdeksännen luokan teknisen työn valinnaisryhmän kanssa kahdessa Oululaisessa yrityksessä ennen yhteishakua. Oppilaat olivat vaikuttuneita Bittiumin kehittämistä huippukestävistä ja -turvallisista viestintäjärjestelmistä. Pääsimme mm. testilaboratoriosta konkreettisesti näkemään miten viranomais- ja sotilaskäyttöön kehitetty älypuhelin kestää iskuja testilaitteistossa.  Ja hyvinhän se kesti, tavalliset puhelimet olisivat olleet päreinä yhdestä iskusta.

 

 

 

 

Toinen vierailukohde oli hienomekaniikka-alan yritys Mectalent. Se valmistaa tilaustyönä muille yrityksille metallituotteita CNC-työstöä hyväksikäyttäen. Kymmenet isot CNC-koneet ja niillä valmistetut kirurgiset apuvälineet, erilaiset aseiden ja koneiden osat saattoivat sytyttää kipinänä ja tulevia metallialan ammattilaisia.

Molemmissa yrityksissä kokeneet ammatilaiset kertoivat oppilaille työelämästä ja ennen kaikkea  tärkeistä työelämätaidoista.

Jouni Karsikas

 

Valoa pimeyden keskelle: Led-valaisin kierrätysmateriaaleista

Tänä syksynä Rajakylän koululla aloitti jälleen uusi teknologiapainotteinen luokka 3. luokalta. Alkusyksyn käytimme ryhmäytymiseen ja yhteisten toimintamallien opetteluun ja harjoitteluun. Syksyn edetessä luokkaamme muutti luokan oma maskotti, Matti-majava, jonka talvivalmisteluihin liittyy myös ensimmäinen toteuttamamme teknoprojekti. Huomasimme, että talvea kohden mennessä illat ja aamut ovat jo hämäriä ja erityisesti yöt pimeitä. Tarvitsemme siis keinotekoista valoa auringonvalon korvaajaksi. Oppilaat saivat tehtäväkseen suunnitella Matti-majavalle led-valaisimen, jossa hyödynnetään mahdollisimman paljon kierrätysmateriaaleja. Kodeista löytyikin monenlaisia purkkeja ja pakkauksia, joita lähdimme yhdessä muokkaamaan valaisimen koteloiksi.

Sähkövirtaa valaisimeen saadaan USB-johdon kautta, joita monelta löytyi myös kotoa, esimerkiksi vanhoista tarpeettomiksi käyneistä latureista. Lisäksi tarvitaan led-poltin ja vastus, joiden toimintaperiaateeseen tutustuimme ja opettelimme miten komponenttien juottaminen tapahtuu. Samalla kertasimme myös mitä tarkoittaa avoin ja suljettu virtapiiri. Tarkemmin elektroniikkaosion työvaiheista on kerrottu Kreetta Blomsterin tekemästä ohjeesta, joka löytyy dokumenttikansiosta. Kreetta opiskelee luokanopettajaksi Oulun yliopistossa ja hän vastasi tämän projektin elektroniikkaosion toteutuksesta.

Lopuksi oli tehtävänä kiinnittää toimiva led-valo aiemmin tehtyyn koteloon ja vielä viimeistellä valaisin käyttöön sopivaksi. Harjoittelimme myös itsearviointia ja palautteen antamista Qridi-arviointityökalun avulla. Ennen joulua on tarkoitus vielä kirjoittaa lyhyt raportti omasta valaisimesta, johon liitämme kuvan jokaisen omasta tuotoksesta. Keräsimme valaisimet Matti-majavan ympärille luokkamme pimeimpään kulmaukseen, jossa ne ovat esillä vielä jonkin aikaa. Jouluksi valaisimet lähtevät kuitenkin jo oppilaiden koteihin, jossa niistä on varmasti iloa jokaiselle valaisimen suunnittelijalle ja rakentajalle.

Led-valaisimet ja Matti-majava

Lisätietoa tästä projektista ja muita teknoluokan dokumentteja voit ladata itsellesi dokumenttikansiostamme.

Hetkiä Oulun historiasta

Neljäsluokkalaisten monialainen oppimiskokonaisuus oli tällä kertaa yhdistelmä tiedonhakua, ryhmätyötä, tietotekstin kirjoittamista ja käsityöaskartelua. Oppilaat valitsivat Oulun historiasta itseään kiinnostavan aiheen, johon perehtyivät netissä ja kirjastossa. Tästä aiheesta kirjoitettiin tietotekstit, jotka linkitettiin pienoismalliin QR-koodien avulla. Laser-leikkuri osoittautui oivaksi työkaluksi pienoismallien rakentamisessa. Talot syntyivät sillä käden käänteessä.

Viikkoon lisämausteensa antoi Sara Wacklin, joka kirjansa välityksellä kertoi elävästi erilaisia hassuja ja uskomattomia tapauksia Oululaisten edesottamuksista.

Ilma on ainetta.

Onko tämä totta vai tarua? Parasta todistaa väite rakentamalla laite, joka käyttää tätä fysiikan lainalaisuutta hyväkseen.

Neljäsluokkalaisten käsissä syntyi muutamassa tunnissa monta pientä, mutta näppärää lennokkia. Työskentely vaati tarkkaa silmää, vakaata kättä ja kärsivällistä viimeistelyotetta, mutta lopulta tuli valmista. Moni oppilas hihkui iloisen yllättyneenä, kun lennokki lopulta liisi ilman halki suoraan ja tasaisesti tai teki näyttäviä silmukoita. Yleensä kuvataiteen tunnilla askarrellaan pelkkiä koristeita, mutta nämä olivat oikeita, toimivia laitteita!

Oikeastaan työn opettavaisin vaihe oli lennokin tuunaaminen: siipien vääntely, painon määrän säätäminen ja lisäosien suunnittelu. Uskon, että juuri tässä tuunausvaiheessa syttyivät ne uudet, tärkeät oivallukset ilman fysiikasta, painovoimasta ja aerodynamiikasta.

3D-tulostus peruskoulussa

Videokooste koulullamme toteutetuista 3D-tulostusprojekteista

3D-tulostus on yksi nopeimmin kehittyviä ja kasvavia valmistusteknologioita ja sen merkitys tulevaisuudessa tulee olemaan suuri. Gartnerin tutkimuslaitos rankkasi 3D-tulostuksen kolmanneksi tärkeimmäksi teknologiaksi 2014. Kyseessä on teknologia, joka tulevaisuudessa koskettaa jokaisen ihmisen elämää jollain tavalla, joten yleissivistyksenkin kannalta on hyvä tietää mistä on kyse.

3D-tulostuksen perustoimintaperiaate on kolmiulotteisen kappaleen rakentaminen kerroksittain ainetta lisäämällä. Kappale tulostetaan tietokoneella suunnitellun 3D-mallin mukaan. Toimivia materiaaleja on lukemattomia, mm. teräs, titaani, alumiini, monet muovit, lasi ja erilaiset komposiitit. (Lisää eri tulostustekniikoista ja materiaaleista, https://fi.wikipedia.org/wiki/Kolmiulotteinen_tulostus)

Tällä hetkellä 3D-tulostusta käytetään teollisuudessa ennen kaikkea tuotekehitysprojekteissa prototyyppien valmistukseen. Lisääntyvissä määrin sitä käytetään myös pienissä tuotantosarjoissa. Toisaalta tulostustekniikoiden kehittyminen mahdollistaa koko ajan uusia käyttökohteita. Airbusin uuden A350 XWB -konemallin ensimmäisessä lentovalmiissa koneessa on yli tuhat 3D-tulostimella valmistettua osaa.

Myös lääketiede on jo vuosia hyödyntänyt 3D-tulostuksen mahdollisuuksia mm. implanttien, proteesien ja yksilöllisten lastojen valmistuksessa. Itsekin tunnen useita henkilöitä, joilla on suussaan tulostettuja hampaita, jotka on asennettu esim. urheilutapaturmassa katkenneiden tilalle. Lisäksi voidaan tulostaa vaikkapa ihosoluja kerroksittain suoraan vakavaan palovammaan tai laboratoriossa toimivia verisuonia ja sydänlihasta. Visiot ovat hurjat mm. sisäelimien tulostuksen suhteen, mutta varmaa on, että tulevaisuudessa yhä useammalla meistä on kehossamme tulostamalla tehtyjä varaosia.

Rakennusteollisuus on myös ala, missä 3D-tulostuksella on valtavat mahdollisuudet. Nykyään voidaan betonista tulostaa jo kokonaisia taloja. Imatralainen yritys Fimatec on rakennustulostimien kehityksen kärkijoukoissa. Se on kehittänyt rakennustulostimen, joka tulostaa seinäelementtiin samanaikaisesti ulko- ja sisäseinää, eristettä ja asentaa raudoitukset.

Mitä hyötyä 3D-tulostuksen opettamisesta on ja mitä sen kautta voi oppia?

Tässä joitain asioita, jotka liittyvät 3D-tulostukseen ja sen avulla oppimiseen:
– Valtaosa kaikesta suunnittelusta tapahtuu nykyään tietokoneavusteisesti ja projekteissa oppilaat pääsevät siihen käsiksi 3D-mallinnuksen osalta
– 3D-mallinnus/kolmiulotteinen hahmottaminen
– geometria ja mittaaminen
– muotoilu
– materiaalitekniikka (muovit)
– erilaisia rakenteet ja lujuusoppi
– tutustuminen 3D-tulostuksen eri käyttösovelluksiin mm. teollisuudessa, lääketieteessä ja rakentamisessa

Alakoulun puolella 3D-tulostimet ovat olleet teknologiapainotteisten luokkiemme käytössä. Toteutettu on mm. kuviksen, äidinkielen ja teknisen työn yhteisprojekti, missä oppilaat käsikirjoittivat tarinan, suunnittelivat tarinan hahmojen ulkoasun sekä mallinsivat hahmot tietokoneella. 3D-mallit tulostettiin 3D-printterillä ja maalattiin, jonka jälkeen oppilaat tekivät hahmoilla animaatioelokuvan käsikirjoituksen mukaisesti. (https://rajakylatekno.wordpress.com/2014/04/09/suunnitelmasta-tuotteeksi/) Sama luokka on nyt viidennellä luokalla tekemässä kaupunkiprojektia, jossa oppilaat suunnittelevat kaupungin leikkikentille kalusteet, jotka sitten tulostetaan.

Yläkoulun puolella 3D-tulostusta on tällä hetkellä käytetty lähinnä teknisen työn opetuksessa. Seitsemännen luokan oppilaiden kanssa on harjoiteltu 3D-mallinnusta koruprojektin avulla. https://www.youtube.com/watch?v=MEcvuBwnKVM  Lisäksi 8.- ja 9.-luokan valinnaisissa on tehty osia oppilaiden omiin projekteihin. 3D-tulostusta voisi hyödyntää myös kuviksen muotoiluun liittyvissä tehtävissä. Tekstiilityössä puolestaan voisi tulostaa vaikkapa uniikit napit omaan asuun ja molemmissa edellämainituissa hyödyntää tulostettuja painolaattoja ja rullia.

Kaikki lähtee liikkelle 3D-mallinnuksesta. Peruskoulukäyttöön soveltuvia ilmaisia mallinnusohjelmia on jo useita. Tällä hetkellä käytämme 3.-5. luokilla selainpohjaista TinkerCad:ia ja siitä eteenpäin SketchUpMake-ohjelmaa. Tulostimien ohjausohjelmat kehittyvät nopeasti ja ovat jo sillä tasolla, että yläkoulun oppilaat pystyvät käyttämään niitä lyhyellä perehdytyksellä. Yksi ongelma koulukäytössä on monenlaiset asetusten säädöt, jotka eivät onnistu kuin pitkän kokemuksen kautta, mutta ne on sitten opettajan hallittava. Perusjuttuja pystyy tekemään melko helposti, mutta hastaavampien kappaleiden tulostaminen, tai eri materiaalin käyttö vaatii opettajalta aikaa perehtymiseen.

Tulostusnopeus voi olla joskus pullonkaula, mutta siinä auttaa useampi tulostin. Jos koko opetusryhmä tekee jotain tulostettavaa, on pedagogisesti järkevää on olla vähintään kaksi tulostinta, joita käytetään yhtä aikaa. Seiskaluokan koruprojektissa olen rajannut kappaleen kooksi 5x40x40mm. Keskimääräinen tulostusaika projektissa on ollut n.10 min, ja kahdella tulostimella työskentely on ollut sujuvaa. Isommissa projekteissa isompien kappaleiden tulostaminen vie helposti useita tunteja, joten tulostus käynnistetään tunnilla ja sitten tehdään jotain muuta projektiin liittyvää.

3D-tulostus on hyvä apu moneen tuotesuunnittelu- ja muotoiluprojektiin. Se mahdollistaa rakenteet, joita ei ole aikaisemmin pystynyt kouluympäristössä tekemään, kuten oppilaan itse suunnittelemat persoonalliset elektroniikan laitekotelot. Oppilaiden motivaatiotaso on myös ollut tulostusprojekteissa todella korkea. Kaiken kaikkiaan 3D-tulostus avaa kokonaan uuden ja mielenkiintoisen maailman.

-Jouni

http://www.lut.fi/documents/10633/335186/140512+Firpa+Annual+Meeting+2014+Mika+Salmi.pdf/3393d84c-4691-4774-90b2-0d0c844c14f1

http://www.tiede.fi/artikkeli/jutut/artikkelit/tulostin_printtaa_uuden_ihon

http://tieku.fi/teknologia/3d-tulostus/ennatys-uusi-lentokone-sisaltaa-tuhat-3d-tulostettua-osaa

http://www.mtv.fi/uutiset/kotimaa/artikkeli/imatralaislaite-on-ainoa-maailmassa-ja-saattaa-mullistaa-koko-rakennusteollisuuden/5197868

Koulumme tulostimet ovat suomalaisia Minifactoryn tulostimia.  http://www.minifactory.fi/verkkokauppa/tuote-kategoria/minifactory-3d-tulostin/

Muita koulukäytössäkin testattuja tulostinvalmistajia ovat mm. toinen suomalainen Prenta ja hollantilainen Ultimaker

 

 

Robotiikka- ja automaatioprojektin huipennus: Retki Joensuuhun

Joensuu2015Robotiikka- ja automaatioprojektimme rakentelun ja ohjelmoinnin tuotoksena valmistui robotteja kolmeen eli RoboCubJunior -lajiin: neljä pelastusrobottia,  kolme sumorobottia sekä kolme tanssirobottia. Nyt oli aika lähteä matkaan kohti Joensuun Robo-kisoja ja SciFest-tapahtumaa. Joensuussa siis näimme, koimme ja opimme paljon paitsi RoboCub-kisaan ja robotteihin liittyen niin myös erilaisia asioita tiedetapahtuma SciFestin myötä, jonne kaikki retkellä mukana olleet pääsivät kahden päivän aikana tutustumaan. Pakkasimme robottien lisäksi, vielä paikan päällä tapahtuvaa rakentelua ja ohjelmointia varten, mukaan läppärit, rakentelusarjoja, jatkojohtoja jne. Lisäksi otimme mukaan iPadit, joiden avulla jokainen ryhmä kuvasi retken tapahtumia, ja koosti saamistaan kokemuksista päiväkirjan. Päiväkirjoja esittelimme luokassa retken jälkeisellä viikolla.

Sumo1    Sumo2Sumo-lajiin osallistuneiden tunnelmia Joensuusta.

Pelastus2    Pelastus1Pelastus-lajissa riitti haastetta.

Tanssi1Harjoitusten jälkeen yhteen tanssiryhmistämme saatiin vielä taustatanssijoitakin mukaan.

Areena1  IMG_0580  Areena2Areenalla oli SciFestin valo-teemaan sopiva valaistus ja paljon mielenkiintoista nähtävää. Työskentelypaikallamme tehtiin tarvittavat parannukset robotteihin kisasuoritusten välissä.

Retken jälkeen teimme vielä ryhmissä videoita ja trailereita omista roboteista. Osa videoista lähetettiin myös Innokas-verkoston blogiin näytille ja samalla vastasimme myös Innokas-verkoston kouluille ja päiväkodeille heittämään haasteeseen tehdä ”Robotin-tarina”-videoita. Luokkamme tekemiä videoita löytyy täältä: Innokas-verkoston blogi

Kiitos kaikille retkeen ja RoboCub-kisaan osallistuneille mukavasta yhteisestä kokemuksesta! Kerätyn palautteen perusteella retki oli varsin onnistunut ja kirjasimme talteen yhdessä myös kehitysideoita tulevia kisareissuja silmällä pitäen.

Teknoluokkalaiset pelitestaajina

Pelitestausta 3

Luokassamme viime syksynä vieraillut pelituottaja Sami Halonen saapui uudelleen meille vieraaksi viikko sitten keskiviikona. Tällä kertaa teknoluokkalaiset pääsivät testaamaan lähes valmista Ranegade Rockets -peliä tablet-laitteilla ja älypuhelimilla. Oppilaat innostuivat pelistä heti ja  löysivät monia hyviä seikkoja pelistä. Erityisesti pelissä olevaa kaksinpeliominaisuutta monet oppilaista pitivät mielenkiintoisena. Kehittämiskohteitakin oppilaat toki vielä viimeistelyä vaativasta pelistä löysivät.

Pelitestausta 2                   Pelitestausta 4

Oppilaiden tehtävänä oli pelaamisen ja pelin testaamisen lisäksi antaa palautetta peliin liittyen seuraavista osa-alueista: äänet, grafiikka, ohjaus ja hauskuus. Lisäksi pelin kehittäjät olivat kiinnostuneita oppilaiden kehitysideoista ja siitä, mikä pelissä oli parasta. Palautteet lähetimme sähköpostilla Sami Haloselle tiimeineen. Tästä pelistä kuullaan varmasti vielä!

Robotiikka- ja automaatioprojekti käyntiin

Tänään teknoluokassa aloitettiin kovalla innolla rakentamaan robotteja Lego NXT-sarjoista. Rakentelun ja ohjelmoinnin tuotoksena valmistuu kolmeen eri lajiin soveltuvia robotteja: pelastusrobotteja, sumorobotteja sekä tanssi- ja teatterirobotteja. Osallistumme valmiiden robottien kanssa RoboCup Junior SM-kisoihin edellä mainittujen robottityyppien alkeissarjoissa. Kisat järjestetään tänä vuonna SciFest tapahtuman yhteydessä Joensuussa 23.-25.4.2015. Kisaan valmistautumisessa tukena on myös OAMK:n opiskelijatiimi.

Innolla uutta oppien ja vastaantulevia haasteita yhdessä ratkoen tähtäämme kohti huhtikuun lopulla koittavaa Joensuun kisa- ja luokkaretkeä.

Robo1 Robo2 Robo3